
CNT 4714: PHP – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2012

Introduction to PHP – Part 2 Functions and Arrays

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4714/fall2012

http://www.cs.ucf.edu/courses/cnt4714/spr2012

CNT 4714: PHP – Part 2 Page 2 Dr. Mark Llewellyn ©

Functions In PHP

• Functions are at the heart of a well-organized script and will

make your code easy to read and reuse.

• Large projects would be unmanageable without functions

because the problem of repetitive code would bog down the

development process.

• If you haven’t had much experience using functions, you can

think of a function as an input/output machine. The machine

takes the raw materials you feed it (the input) and works with

them to produce a product (the output).

• A function accepts values, processes them, and then performs

an action (printing to the browser, for example), returns a

new value, or both.

CNT 4714: PHP – Part 2 Page 3 Dr. Mark Llewellyn ©

Functions In PHP

• If you need to bake a cake, you would probably do it

yourself, in your own kitchen with your oven. But if you

need to bake thousands of cakes, you would probably build

or acquire a special cake-baking machine, built for making

cakes in massive quantities.

• Similarly, when deciding whether to create a function for

reuse or simply writing in-line code, the most important

factor to consider is the extent to which it can save you from

writing repetitive code.

• If the code you are writing will be used more than once, it is

probably best to create a function to represent the code.

CNT 4714: PHP – Part 2 Page 4 Dr. Mark Llewellyn ©

Functions In PHP

• A function is a self-contained block of code that can be

called by your script.

• When called (or invoked), the function’s code is executed

and performs a particular task. You can pass values to a

function (called arguments), which then uses the values

appropriately – storing them, transforming them, displaying

them, whatever the function is designed to do. When

finished, a function can also pass a value back to the original

code that called it into action.

• In PHP, functions come in two flavors – those built in to the

language, and those that you define yourself.

CNT 4714: PHP – Part 2 Page 5 Dr. Mark Llewellyn ©

Functions In PHP

• PHP has hundreds of built-in functions. Consider the

example shown on the next page that utilizes the built-in

function strtoupper().

• The output from this script is shown below:

CNT 4714: PHP – Part 2 Page 6 Dr. Mark Llewellyn ©

Functions In PHP

CNT 4714: PHP – Part 2 Page 7 Dr. Mark Llewellyn ©

Functions In PHP

• In the previous example, the function strtoupper() is

called and passed a variable whose value is represented by a

string. The function goes about its business of changing the

contents of the string to uppercase letters.

• A function call consists of the function name followed by

parentheses. (Note, even a function that has no parameters

requires a set of parentheses.) The information being passed

to the function (the arguments) are placed between the

parentheses.

• For functions that require more than one argument, the

arguments are separated by commas:

 some_function ($an_argument, $another_argument);

CNT 4714: PHP – Part 2 Page 8 Dr. Mark Llewellyn ©

Functions In PHP

• The strtoupper()from the previous example is typical

for a function in that it returns a value. Most functions return

some information back after they’ve completed their task –

they usually at least tell whether their mission was successful.

• The strtoupper() function returns a string value so its

usage requires the presence of a variable to accept the returned

string, as was the case in the line:

 $capitalized_string – strtoupper($original_string);

• Functions in PHP that return values use a return statement

within the body of the function. We’ll use this in a few more

pages when we start constructing our own functions.

CNT 4714: PHP – Part 2 Page 9 Dr. Mark Llewellyn ©

Defining Functions In PHP

• You can define your own functions in PHP using the

function statement:

 function someFunction($argument1,. . .,argument2) {

 //function code goes here

 }

• The name of the function follows the function statement and

precedes a set of parentheses. If your function requires

arguments, you must place the comma-separated variable

names within the parentheses. These variables will be filled

by the values passed to your function when it is called.

• Even if your function does not require arguments you must

still supply the parentheses.

CNT 4714: PHP – Part 2 Page 10 Dr. Mark Llewellyn ©

Defining Functions In PHP
• Naming conventions for functions are the same as for normal

variables in PHP. As with variables you should apply

meaningful names and be consistent in naming and style.

Using mixed case in function names is a common convention,

thus myFunction() instead of myfunction() or

my_function(). (Note: variables names are case

sensitive in PHP, function names are not!)

• Let’s define a simple function that simply prints out the word

“Hello” in big letters.

 function bigHello() {

 echo “<h1> HELLO </h1>”

 }

CNT 4714: PHP – Part 2 Page 11 Dr. Mark Llewellyn ©

Defining Functions In PHP

Function definition

Function call

Function result

CNT 4714: PHP – Part 2 Page 12 Dr. Mark Llewellyn ©

Defining Functions In PHP

• For the next example, let’s define a function that requires an

argument. Actually, let’s define two different functions that

each take an argument.

• The first function will take a string and print the string with a

 element appended to the string. The second function

will do the same, but append two
 elements to the end

of the string.

CNT 4714: PHP – Part 2 Page 13 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 14 Dr. Mark Llewellyn ©

Defining Functions In PHP
• For the next example, let’s define a function that requires two

arguments. We’ll basically repeat the exercise from the previous

example, but in this case rather than writing two different

functions that differ only in the number of
 elements they

append to a line of text, the new function will have a second
argument that represents the number of
 elements to be

appended. Clearly this would be more efficient, in terms of code,

than creating a different function for each number of

elements we might want to append.

• In the first version of this example, shown on the next page, I

simply repeated the same effect as in the previous version, so the

two screen shots from the browser should look identical.

• The second version of this example, shown on page 15, a different

effect is produced by the function calls.

CNT 4714: PHP – Part 2 Page 15 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 16 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 17 Dr. Mark Llewellyn ©

Defining Functions In PHP
• As a final example of simple function definition, let’s construct

a function that returns a value.

• In the previous two examples, the string that had the

elements appended to it was simply printed out in the browser.

Sometimes, however, you will want the function to provided a

value that you can work with yourself. For example, if the

function had returned the appended string, we could have

passed that to another function to further process the amended

string before it was printed.

• Let’s construct a function that will take three integer arguments

and determine the largest of the argument values and return this

value to the caller.

CNT 4714: PHP – Part 2 Page 18 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 19 Dr. Mark Llewellyn ©

Defining Functions In PHP

• The return statement can return a value or nothing at all.

• How you arrive at a value passed by a return statement can

vary.

– The value can be hard-coded: return 4;

– It can be the result of an expression: return $a/$b;

– It can be the value returned by yet another function call:

 return anotherFunction($an_argument);

CNT 4714: PHP – Part 2 Page 20 Dr. Mark Llewellyn ©

Variable Scope

• A variable that is declared within a function remains local to

that function. In other words, that variable is not available

outside of the function or within other functions.

• This is referred to as the scope of a variable.

• This also implies that variable names are not required to be

unique across functions. Therefore the same variable can be

defined in more than one function.

• The following example illustrates the scope of a variable.

Notice that both functions functionOne and

functionTwo declare variables named myInt.

CNT 4714: PHP – Part 2 Page 21 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 22 Dr. Mark Llewellyn ©

Defining Functions In PHP

Inside the functions the variable is visible

(it is in scope)

Outside the functions the variables are

not visible (they are out of scope).

CNT 4714: PHP – Part 2 Page 23 Dr. Mark Llewellyn ©

Variable Scope
• Similar to a variable defined inside a function having no scope outside

of the function, a variable declared outside of a function is not

accessible from inside the function.

• In general, if a function needs information from outside of the function

in order to accomplish its task, the information should be passed as an

argument to the function.

• Having said this however, there are times when you might want to

access an important variable without passing it in as an argument.

This is accomplished in PHP with the global statement. The

global statement allows a function to access a variable declared

outside of the function. More than one variable can be declared global

at one time by separating the variable names with commas.

• The following example illustrates this concept using a variation of the

previous example.

CNT 4714: PHP – Part 2 Page 24 Dr. Mark Llewellyn ©

Variable Scope

CNT 4714: PHP – Part 2 Page 25 Dr. Mark Llewellyn ©

Inside functionOne the variable

$alpha is visible via the global

statement. Note that the function
modified the value of $alpha.

Inside functionTwo the variable $alpha is

also visible via the global statement. The third

echo statement in this function will generate the

error when it attempts to reference the variable
$beta which is not in scope.

Outside of the functions the variables are

again in scope and notice the modified
value of $alpha.

CNT 4714: PHP – Part 2 Page 26 Dr. Mark Llewellyn ©

Saving State Between Function Calls
• Local variables within functions have a short but happy life –

they come into existence when the function is called and die

when the execution of the function is finished.

• Occasionally, however, you might want to give a function a

rudimentary memory.

• For example, suppose that you’d like a function to keep track of

the number of times it has been called so that numbered headings

can be created by a script.

• You could of course accomplish this by using the global

statement and accessing a variable declared outside of the

function. The example on the next page illustrates this

technique.

CNT 4714: PHP – Part 2 Page 27 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CNT 4714: PHP – Part 2 Page 28 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CNT 4714: PHP – Part 2 Page 29 Dr. Mark Llewellyn ©

Saving State Between Function Calls
• The previous example illustrated providing a function some

“memory” through the use of a global variable.

• This is not a very elegant way to achieve this task. Why?

• Answer: Functions that use the global statement cannot be read

as standalone blocks of code. In reading or reusing them, you

must look out for the global variables that they manipulate.

Failing to do so will render the function useless.

• This is where the static statement comes into play in PHP.

• Declaring a variable within a function to be static, the variable

remains local to the function and the function remembers its

value from execution to execution. The next example illustrates

the static statement.

CNT 4714: PHP – Part 2 Page 30 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CNT 4714: PHP – Part 2 Page 31 Dr. Mark Llewellyn ©

Saving State Between Function Calls

CNT 4714: PHP – Part 2 Page 32 Dr. Mark Llewellyn ©

Setting Default Values For Arguments
• PHP provides a nifty feature to help you construct flexible

functions. For functions that require one or more arguments, you

can specify that some arguments are optional. This makes your

functions more flexible.

• To illustrate the concept of the usefulness of setting default

argument values, let’s build a function that takes a string of text

and an integer that corresponds to the point size in which the

string is to be printed in the browser.

• This is shown on the next page.

CNT 4714: PHP – Part 2 Page 33 Dr. Mark Llewellyn ©

Setting Default Values For Arguments

CNT 4714: PHP – Part 2 Page 34 Dr. Mark Llewellyn ©

Setting Default Values For Arguments
• The nifty feature that PHP provides is to allow you to assign a value to

a function argument within the function definition’s parentheses.

• The effect of this is to make the argument value passed from the caller

optional as the argument will assume the default value if no value is

provided by the caller. The next example modifies the previous

example to make use of this feature of PHP.

WARNING

You can create as many optional arguments to a function as you wish.

However, the arrangement of the arguments becomes important. Once an

optional argument is defined in a function definition, all subsequent arguments

must also be optional. In other words, you cannot have the first argument be

optional, the second argument required, the third argument optional and so

on. The ordering must be: all required arguments followed by all optional

arguments.

CNT 4714: PHP – Part 2 Page 35 Dr. Mark Llewellyn ©

The second parameter has a default

value specified making it an optional

parameter to the function. The 2nd and

3rd calls make use of this default value.

CNT 4714: PHP – Part 2 Page 36 Dr. Mark Llewellyn ©

Passing Variable References To Functions

• When you pass arguments to functions, they are stored as copies

in parameter variables. This means that any changes made to

these variables by the function is local to the function and are not

reflected beyond it.

• The example on the next page illustrates argument passing by

value.

CNT 4714: PHP – Part 2 Page 37 Dr. Mark Llewellyn ©

Upon return the value of
$original_num is

unchanged by the

function.

CNT 4714: PHP – Part 2 Page 38 Dr. Mark Llewellyn ©

Passing Variable References To Functions

• By default in PHP, variables passed to functions are passed by

value. In other words, only local copies of the variables are used

by the functions and the original values of the variables are not

accessible by the function.

• So how can you allow a function to actually modify a variable

sent to it? You must create a reference to the variable.

• The reference operator in PHP is the & (ampersand). Placing an

ampersand in front of an argument in a function definition

creates a reference to the variable and allows the function to

modify the original variable.

• The following example modifies the previous example to make

use of passing an argument by reference.

CNT 4714: PHP – Part 2 Page 39 Dr. Mark Llewellyn ©

The argument $num is passed by

reference since it is preceded with the &

operator.

Upon return from the function the value
of $original_num has been changed.

CNT 4714: PHP – Part 2 Page 40 Dr. Mark Llewellyn ©

Arrays In PHP

• Most of our PHP examples to this point have involved scalar

variables (we did see a couple of example in the first section

of notes that made use of one of PHP’s global associative

arrays).

• Scalar variables can only hold a single value at a time. For

example, a variable $color could hold only a single value

such as red, at any point in time. The variable could not be

used to hold more than one color.

• Arrays are special types of variables that enable you to store

as many values as you want.

Note: Although you can technically make an array as large as you’d like, some built-in array handling

functions in PHP have an upper limit of 100,000 values. If you are storing more data that this in your

arrays and you need to use one of these functions, you will either need to write your own function or split

the data into multiple arrays.

CNT 4714: PHP – Part 2 Page 41 Dr. Mark Llewellyn ©

Arrays In PHP

• Arrays are indexed, which means that each entry in the array,

called an element, is made up of a key and a value.

• The key is the index position, beginning with 0 and

increasing incrementally by 1 with each new element in the

array.

• The value is whatever value you associate with that position

– a string, an integer, or whatever you want.

• In PHP you can think of an array as a filing cabinet and each

key/value pair as a file folder. The key is the label written on

the tab of the folder, and the value is what is inside. What’s

inside each folder can vary from folder to folder.

CNT 4714: PHP – Part 2 Page 42 Dr. Mark Llewellyn ©

Creating Arrays In PHP

• You can create an array using either the array() function

or the array operator [].

• The array() function is usually used when you want to

create a new array and populate it with more than one

element, all at the same time.

• The array operator is more often used when you want to

create a new array with just one element at the outset or

when you want to add to an existing array element.

• The examples on the following couple of pages illustrate

creating an array in PHP using these two techniques.

CNT 4714: PHP – Part 2 Page 43 Dr. Mark Llewellyn ©

This version uses the
array() function to create

the array.

CNT 4714: PHP – Part 2 Page 44 Dr. Mark Llewellyn ©

This version uses the array operator [] to

create the array.

Note that no index values are specified,

PHP will auto number for you

CNT 4714: PHP – Part 2 Page 45 Dr. Mark Llewellyn ©

This version also uses the array operator

[] to create the array.

Note that index values are specified in

this case.

CNT 4714: PHP – Part 2 Page 46 Dr. Mark Llewellyn ©

Creating Arrays In PHP

• As shown in the example on page 44, PHP can automatically

index the array for you when you use the [] operator to

create the array.

• This is useful in that it eliminates the possibility that you

might misnumber the elements. The example on the next

page illustrates what happens if you misnumber the elements

in an array.

CNT 4714: PHP – Part 2 Page 47 Dr. Mark Llewellyn ©

Misnumbering starts here

with no element 4 defined

and then 6 too is missed.

CNT 4714: PHP – Part 2 Page 48 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 49 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• The arrays we’ve seen so far have been numerically indexed,

meaning that they use an integer index position as the key.

• Associative arrays utilize actual named keys. In PHP, the

named keys of an associative array are character strings

rather than numerical values. The string value is used to look

up or provide a cross-reference to the data value.

• The following example creates an associative array named

$instructor with three elements.

 $instructor[“CNT 4714”] = “Llewellyn”;

 $instructor[“CIS 3003”] = “Eisler”;

 $instructor[“CIS 3360”] = “Guha”;

CNT 4714: PHP – Part 2 Page 50 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• The same array could also be created using the array()

function instead of the array operator []. This is shown

below:

 $instructor = array (“CNT 4714” => “Llewellyn”,

“CIS 3003” => “Eisler”, “CIS 3360” => “Guha”);

• When using the array() function, items are assigned in

index/value pairs using the => operator.

• When you want to access an item in an associative array, a

syntax similar to that used with sequential (numerically

indexed) arrays is employed, however, a string value or

variable is used for the index.

CNT 4714: PHP – Part 2 Page 51 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• Suppose you wanted to retrieve the instructor for CIS 4004.

The following expression would achieve this:

 $teacher = $instructor[“CNT 4714”];

• The variable $teacher would be assigned the data value

associated with “CNT 4714” which would be “Llewellyn”.

Note: You might be tempted to do the following with an associative array, where you are

trying to determine which course is taught by the instructor named “Llewellyn”:

$course = $instructor[“Llewellyn”];

Don’t do this! An associative array can fetch data values only via the keys and not the

values associated with the keys. Therefore, it cannot find and entry in the array with an

index value of “Llewellyn” and will return nothing and the value of $course will be

undefined. The example on the following page illustrates this.

CNT 4714: PHP – Part 2 Page 52 Dr. Mark Llewellyn ©

Incorrect Version

CNT 4714: PHP – Part 2 Page 53 Dr. Mark Llewellyn ©

Correct Version

CNT 4714: PHP – Part 2 Page 54 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• A common iterative statement used with both sequential and

associative arrays is the foreach statement.

• The general syntax of the foreach statement is:

 foreach (arrayname as variable) {

 . . . Statements to repeat

 }

• The first variable inside the parentheses is the variable name

representing the array and the second variable is automatically

set to the next array item at each iteration of the loop. An

example using a sequential array is shown on the next page and

one with an associative array on the following page.

CNT 4714: PHP – Part 2 Page 55 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 56 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 57 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• Changing values, adding elements, deleting elements, and

verifying an element are all among the common operations

that you’ll need to perform on an associative array.

• Changing an existing value is done through simple

assignment. For example, to update the number of monitors

in the previous example from 23 to 5, the following

statement would be used: $inventory[“monitors”] = 5;

• To add a new element to an associative array, use the array

operator [] as in: $inventory[“keyboards”] = 12;

• Deleting an element from an associative array is done using

the unset() function.

CNT 4714: PHP – Part 2 Page 58 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 59 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• To verify if a particular index exists in an associative array,

use the isset() function.

• The isset() function returns true if index passed as an

argument appears in the associative array and false

otherwise.

• The example on the following page illustrates using the

isset() function.

CNT 4714: PHP – Part 2 Page 60 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 61 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• As with many things in PHP, associative array indices are

case-sensitive. Thus, in the previous example, if the call to

the isset() function were passed the parameter

“Monitors” instead of “monitors” it would return false

instead of true.

• See next page.

CNT 4714: PHP – Part 2 Page 62 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 2 Page 63 Dr. Mark Llewellyn ©

Sorting Associative Arrays In PHP

• PHP has a special set of functions for sorting associative arrays.

• The asort() function sorts an associative array and

maintains the relationship between the indices and the values.

The sort is based upon the values in the associative array passed

as an argument to the function. The sort order is ascending

based on the value. The arsort() function sorts in

descending order based on value.

• The ksort() function is similar to the asort() function

but it sorts an associative array using the indices (in ascending
order) as the sort field. The krsort() function sorts in

descending order using the indices.

• These various sort functions are shown on the next few pages.

CNT 4714: PHP – Part 2 Page 64 Dr. Mark Llewellyn ©

Using asort()

CNT 4714: PHP – Part 2 Page 65 Dr. Mark Llewellyn ©

Using arsort()

CNT 4714: PHP – Part 2 Page 66 Dr. Mark Llewellyn ©

Using ksort()

CNT 4714: PHP – Part 2 Page 67 Dr. Mark Llewellyn ©

Using krsort()

CNT 4714: PHP – Part 2 Page 68 Dr. Mark Llewellyn ©

Using Multidimensional Arrays In PHP

• Some data are best represented by creating a list of lists (a

multidimensional array).

• Consider the following table listing the inventory for a

hardware store:

• The example on the next page represents this data in a two-

dimensional associative array.

Part Number Part Name Count Price

AC1000 Hammer 122 28.50

AC1001 Wrench 25 14.00

AC1002 Saw 18 25.00

AC1003 Screwdriver 34 4.50

CNT 4714: PHP – Part 2 Page 69 Dr. Mark Llewellyn ©

Front-end

Provides a set of radio buttons for user to select the

part they’d like to see more information about.

CNT 4714: PHP – Part 2 Page 70 Dr. Mark Llewellyn ©

PHP script to find the correct entry in the associative array

based on the user’s selection, then display the associative array

entries for that item.

CNT 4714: PHP – Part 2 Page 71 Dr. Mark Llewellyn ©

1. User selects

a part number

2. PHP script displays

part details.

